Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system

نویسندگان

  • A. Álvarez
  • A. Orfila
  • J. Tintoré
چکیده

[1] Satellites are the only systems able to provide continuous information on the spatiotemporal variability of vast areas of the ocean. Relatively long-term time series of satellite data are nowadays available. These spatiotemporal time series of satellite observations can be employed to build empirical models, called satellite-based ocean forecasting (SOFT) systems, to forecast certain aspects of future ocean states. SOFT systems can predict satellite-observed fields at different timescales. The forecast skill of SOFT systems forecasting the sea surface temperature (SST) at monthly timescales has been extensively explored in previous works. In this work we study the performance of two SOFT systems forecasting, respectively, the SST and sea level anomaly (SLA) at weekly timescales, that is, providing forecasts of the weekly averaged SST and SLA fields with 1 week in advance. The SOFT systems were implemented in the Ligurian Sea (Western Mediterranean Sea). Predictions from the SOFT systems are compared with observations and with the predictions obtained from persistence models. Results indicate that the SOFT system forecasting the SST field is always superior in terms of predictability to persistence. Minimum prediction errors in the SST are obtained during winter and spring seasons. On the other hand, the biggest differences between the performance of SOFT and persistence models are found during summer and autumn. These changes in the predictability are explained on the basis of the particular variability of the SST field in the Ligurian Sea. Concerning the SLA field, no improvements with respect to persistence have been found for the SOFT system forecasting the SLA field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling a two-way nested primitive equation model and a statistical SST predictor of the Ligurian Sea via data assimilation

A primitive equation model and a statistical predictor are coupled by data assimilation in order to combine the strength of both approaches. In this work, the system of two-way nested models centred in the Ligurian Sea and the satellite-based ocean forecasting (SOFT) system predicting the sea surface temperature (SST) are used. The data assimilation scheme is a simplified reduced order Kalman f...

متن کامل

Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...

متن کامل

Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...

متن کامل

بررسی روابط شاخص نوسان جنوبی و دمای سطح آب اقیانوس‌های آرام و هند با بارش فصلی و ماهانه ایران

Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) patterns affect rainfall in many parts of the world. This study aimed to investigate the relationship between monthly and seasonal rainfall of Iran versus SOI and Pacific and Indian sea surface temperature. Monthly rainfall data, from 50 synoptic stations with at least 30 years of records up to the end of 2007, were used. Monthl...

متن کامل

Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms

We propose a nonlinear ocean forecasting technique based on a combination of genetic algorithms and empirical orthogonal function (EOF) analysis. The method is used to forecast the space-time variability of the sea surface temperature (SST) in the Alboran Sea. The genetic algorithm finds the equations that best describe the behaviour of the different temporal amplitude functions in the EOF deco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004